URL's of Preprints

EntryAuthorTitleTextPublishedEmailCreation date
105Abramov S., Bronstein M., Petkovsek M. On Polynomial Solutions of Linear Operator Equationsavailableyesbronstein@inf.ethz.chFebruary 6, 97
95Bach E., von zur Gathen J., Lenstra H. Deterministic factorization of polynomials over special finite fieldsavailablenovaneff@can.nlFebruary 6, 97
88Bierstedt K. The e-(tensor) product of a (DFS)-space with arbitrary Banach spaces availablenoFebruary 6, 97
106Bronstein M. Integration and Differential Equations in Computer Algebraavailableyesbronstein@inf.ethz.chFebruary 6, 97
108Bronstein M. Linear Ordinary Differential Equations: breaking through the order 2 barrieravailableyesbronstein@inf.ethz.chFebruary 6, 97
107Bronstein M. On Solutions of Linear Ordinary Differential Equations in their Coefficient Fieldavailableyesbronstein@inf.ethz.chFebruary 6, 97
103Bronstein M. SUM-IT: A strongly-typed embeddable computer algebra libraryavailableyesbronstein@inf.ethz.chFebruary 6, 97
104Bronstein M., Petkovsek M. An Introduction to Pseudo-Linear Algebraavailableyesbronstein@inf.ethz.chFebruary 6, 97
61D. Kapur, T. Saxena Algebraic and Geometric Reasoning using Dixon Resultantsavailableyessaxena@cs.albany.eduJanuary 16, 97
55D. Kapur, T. Saxena Comparison of Various Multivariate Resultant Formulationsavailableyessaxena@cs.albany.eduJanuary 6, 97
60Deepak Kapur, Tushar Saxena Sparsity Considerations in the Dixon Resultant Formulationavailableyessaxena@cs.albany.eduJanuary 16, 97
115Detlev Kirmse (Hrsg.) Computeralgebrasysteme (CAS) im Mathematikunterricht an bayerischen Schulenavailablenokirmse@zs-augsburg.deMay 11, 97
51E.S. Cheb-Terrab Book review: Classical Mechanics with Maple (R.L Greene)availableyesterrab@symbcomp.uerj.brDecember 14, 96
50E.S. Cheb-Terrab Maple procedures for partial and functional derivativesavailableyesterrab@symbcomp.uerj.brDecember 14, 96
48E.S. Cheb-Terrab Symbolic Computing with Anti-commutative and Non-commutative variablesavailablenoterrab@symbcomp.uerj.brDecember 14, 96
134E.S. Cheb-Terrab, A.D. Roche Integrating Factors and ODE Patternsavailablenoadroche@daisy.uwaterloo.caDecember 9, 97
46E.S. Cheb-Terrab, A.G. Elfimov Computer Algebra Evaluation of the Permability Tensor in Toroidal Plasmasnot availableyesterrab@symbcomp.uerj.brDecember 14, 96
45E.S. Cheb-Terrab, A.G. Elfimov The solution of Vlasov's equation for complicated plasma geometry (spherical type)not availableyesterrab@symbcomp.uerj.brDecember 14, 96
47E.S. Cheb-Terrab, A.G. Elfimov Vlasov-Maxwell equations for complicated plasma geometrynot availableyesterrab@symbcomp.uerj.brDecember 14, 96
49E.S. Cheb-Terrab, E.V. Correa-Silva, L.A. da Mota A Symbolic Computing Environment for Doing Calculations in Quantum Field Theoryavailableyesterrab@symbcomp.uerj.brDecember 14, 96
43E.S. Cheb-Terrab, H.P. de Oliveira Poincare Sections of Hamiltonian Systemsnot availableyesDecember 14, 96
44E.S. Cheb-Terrab, K. von Bülow A Computational Approach for the Analytical Solving of Partial Differential Equationsnot availableyesDecember 14, 96
52E.S. Cheb-Terrab, K. von Bülow Analytical Solving of Partial Differential Equations using Symbolic Computingavailableyesterrab@symbcomp.uerj.brDecember 14, 96
42E.S. Cheb-Terrab, L.G.S. Duarte, L.A. da Mota Computer Algebra Solving of First Order ODEs Using Symmetry Methodsnot availableyesDecember 14, 96
62Emiris I, Canny J.F. A Subdivision-Based Algorithm for the Sparse Resultant,availablenoJanuary 17, 97
72Emiris I. A Complete Implementation for Computing General Dimension Convex HullsavailablenoJanuary 17, 97
66Emiris I. A General Solver Based on Sparse Resultantsavailableyesemiris@sophia.inria.frJanuary 17, 97
68Emiris I. Compact Matrices for the Sparse ResultantavailablenoJanuary 17, 97
77Emiris I. Force Closure Grasps of High QualityavailablenoJanuary 17, 97
65Emiris I. On the Complexity of Sparse Eliminationavailableyesemiris@sophia.inria.frJanuary 17, 97
116Emiris I., Bronnimann H., Pan V., Pion S. Computing Exact Geometric Predicates Using Modular Arithmetic with Single Precisionavailablenoemiris@sophia.inria.frJuly 8, 97
69Emiris I., Canny J. A Practical Method for the Sparse Resultantavailableyesemiris@sophia.inria.frJanuary 17, 97
63Emiris I., Canny J. An Efficient Algorithm for the Sparse Mixed Resultantavailableyesemiris@sophia.inria.frJanuary 17, 97
64Emiris I., Canny J. Efficient Incremental Algorithms for the Sparse Resultant and the Mixed Volumeavailableyesemiris@sophia.inria.frJanuary 17, 97
70Emiris I., Canny J.F. A General Approach to Removing Degeneraciesavailableyesemiris@sophia.inria.frJanuary 17, 97
71Emiris I., Canny J.F., Seidel R. Efficient Perturbations for Handling Geometric DegeneraciesavailablenoJanuary 17, 97
76Emiris I., Galligo A., Lombardi H. Certified Approximate Univariate GCDsavailablenoJanuary 17, 97
75Emiris I., Galligo A., Lombardi H. Numerical Univariate Polynomial GCDavailablenoJanuary 17, 97
67Emiris I., Rege A. Monomial Bases and Solution of Polynomial Systemsavailableyesemiris@sophia.inria.frJanuary 17, 97
114G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomialsavailablenoGilles.Villard@imag.frApril 19, 97
113G. Villard Fast parallel algorithms for matrix reduction to normal formsavailablenoGilles.Villard@imag.frApril 19, 97
94Gao S., von zur Gathen J., Panario D. Gauss periods, primitive normal bases, and fast exponentiation in finite fields availablenovaneff@can.nlFebruary 6, 97
83Gonzalez-Vega L. A Combinatorial Algorithm solving some Quantifier Elimination problemsavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
84Gonzalez-Vega L. An elementary proof of Barnett's Theorem about the g.c.d. of several univariate polynomialsavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
80Gonzalez-Vega L. Applying Quantifier Elimination to the Birkhoff Interpolation Problemavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
57Gonzalez-Vega L. Some examples of problem solving by using the symbolic viewpoint when dealing with polynomial systems of equationsavailableyesvaneff@can.nlJanuary 16, 97
86Gonzalez-Vega L. Symbolic Recipes for Polynomial System Solving: Real Solutionsavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
79Gonzalez-Vega L., Ceballos L. Manipulation of real roots of polynomials: Isolating Intervals or Thom's Codesavailableyesgvega@matsun1.matesco.unican.esJanuary 21, 97
87Gonzalez-Vega L., El Kahoui M. An improved upper complexity bound for the topology computation of a real algebraic plane curveavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
85Gonzalez-Vega L., Lombardi H. Smooth parametrizations for several cases of the Positivstellensatzavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
81Gonzalez-Vega L., Lombardi H., Mahe L. Virtual Roots of Real Polynomialsavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
82Gonzalez-Vega L., Lombardi H., Recio T., Roy M.-F. Sturm-Habicht sequences, determinants and real roots of univariate polynomialsavailablenogvega@matsun1.matesco.unican.esJanuary 21, 97
112J. L. Bueso, J. Gomez Torrecillas, F.J. Lobillo, F.J. Castro An Introduction to Effective Calculus in Quantum Groupsavailableyestorrecil@goliat.ugr.esApril 18, 97
102Shparlinski I. On polynomial approximation and the parallel complexity of the discrete logarithm and breaking the Diffie-Hellman cryptosystemavailablenovaneff@can.nlFebruary 6, 97
97von zur Gathen J., Gerhard J. Arithmetic and factorization of polynomials over F_2availablenovaneff@can.nlFebruary 6, 97
98von zur Gathen J., Hartlieb S. Factoring modular polynomials availablenovaneff@can.nlFebruary 6, 97
99von zur Gathen J., Hartlieb S. Factorization of polynomials modulo small prime powers availablenovaneff@can.nlFebruary 6, 97
89von zur Gathen J., Karpinski M., Shparlinski I. Counting curves and their projectionsavailablenovaneff@can.nlFebruary 6, 97
96von zur Gathen J., Roche J. Polynomials with two values availablenovaneff@can.nlFebruary 6, 97
101von zur Gathen J., Schlink S. Normal bases via general Gauss periodsavailablenovaneff@can.nlFebruary 6, 97
91von zur Gathen J., Shparlinski I. Finding points on curves over finite fieldsavailablenovaneff@can.nlFebruary 6, 97
92von zur Gathen J., Shparlinski I. Orders of Gauss periods in finite fieldsavailablenovaneff@can.nlFebruary 6, 97
93von zur Gathen J., Weiss J. Homogenous bivariate decompositionsavailablenovaneff@can.nlFebruary 6, 97
90von zur Gathen J.,Shparlinski I. Components and projections of curves over finite fieldsavailablenovaneff@can.nlFebruary 6, 97

Go to: