next up contents
Next: Overview of EAT, a Up: Matrix exponential via Clifford


[1] J. T. Scheick: 1997, Linear Algebra with Applications, McGraw-Hill Companies, Inc., New York.

[2] A. Crumeyrolle: 1990, Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht.

[3] R. Ab\lamowicz, P. Lounesto (eds.) 1995: Clifford Algebras and Spinor Structures, A Special Volume Dedicated to the Memory of Albert Crumeyrolle (1919-1992), Kluwer, Dordrecht.

[4] R. Ab\lamowicz, P. Lounesto, and J. M. Parra, (eds.): 1996, Clifford Algebras with Numeric and Symbolic Computations, Birkhäuser, Boston.

[5] P. Lounesto (1981): 'Scalar products of spinors and an extension of Brauer-Wall groups,' Found. Physics, Vol. 11, Nos. 9/10, pp. 721 - 740.

[6] R. Ab\lamowicz: 1996, 'Clifford algebra computations with Maple,' in Geometric (Clifford) Algebras in Physics, ed. W. Baylis, Birkhäuser, Boston.

[7] R. Ab\lamowicz: 1997, `'CLIFFORD' - Maple V package for Clifford algebra computations', ver. 3, available at:

[8] `Maple V Release 4 for Windows,' 1996, Waterloo Maple Software, Waterloo, Ontario.